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Abstract

Bell’s theorem rules out local hidden-variable theories. The locality
condition is the demand that what an experimenter freely chooses to
measure in one space-time region has no influence in a second space-
time region that is spacelike separated from the first. The hidden-
variable stipulation means that this demand is implemented through
requirements on an assumed-to-exist substructure involving hidden
variables. The question thus arises whether the locality condition itself
fails, or only its implementation by means of the assumed hidden-
variable structure. This paper shows that any theory that satisfies
two generally accepted features of orthodox quantum theory and that
yields certain predictions of quantum theory cannot satisfy the afore-
mentioned locality condition. These two features are that the choices
made by the experimenters can be treated as localized free variables
and that such free choices do not affect outcomes that have already
occurred.
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76SF00098.



1. Introduction.

The premises of Bell’s original theorem[1] postulate the existence of a
substructure that determines in a local manner the outcomes of the whole
set, of alternative possible measurements at most one of which can actually
be performed. The implementation of the locality condition in this way thus
involves technical “hidden-variable” assumptions that go beyond the locality
condition itself. Consequently, Bell’s proof of the inconsistency of this local
hidden-variable assumption with certain predictions of quantum theory casts
no serious doubt on the locality condition itslf: its implementation via the
hidden-variable structure would appear to be the more likely cause of the
inconsistency.

Bell[2] introduced later a seemingly weaker local hidden-variable assump-
tion, but this latter form can be shown|3,4] to entail the original one, apart
from errors that tend to zero as the number of experiments tends to infin-
ity. Thus both forms of the assumption place on the class of theories covered
strong mathematical conditions that are essentially equivalent to the assump-
tion that values can be pre-assigned conjunctively and locally to all of the
outcomes of all of the alternative possible measurements. That assumption
conflicts with orthodox quantum thinking. Thus these hidden-variable theo-
rems place in no serious jeopardy the primitive locality condition that a free
choice made by an experimenter in one space-time region has no influence in
a second region that is space-like separated from the first.

The present paper shows that this locality condition fails in a much larger
class of theories, namely those that are compatible with the properties of Free
Choice and No Backward-in-Time Influence on observed outcomes, and that
yield certain predictions of quantum theory in experiments of the Hardy
type[5]. The first two of these three properties are now described.

Free Choices.

For the purposes of understanding and applying quantum theory, the choice
of which experiment is to be performed in a certain space-time region can
be treated as an independent free variable localized in that region. Bohr re-
peatedly stressed the freedom of the experimenter to chose between alter-
native possible options. This availability of options is closely connected to



his “complementarity” idea that the quantum state contains complementary
kinds of information pertaining to the various alternative mutually exclusive
experiments that might be chosen. Of course, no two mutually incompati-
ble measurements can both be performed, and an outcome of an experiment
can be specified only under the condition that that particular experiment be
performed.

No Backward-in-Time Influence. (NBITI) An outcome that has already been
observed and recorded in some spacetime region at an earlier time can be
considered fized and settled, independently of which experiment a far-away
experimenter will freely choose to perform at some later time. This assump-
tion assigns no value to a local measurement except under the condition that
this local measurement be performed. But any such locally observed value
is asserted to be independent of which measurement will at some later time
be freely chosen and performed in a spacelike separated regions.

This NBITI assumption is required to hold in at least one Lorentz frame
of reference, hence forth called LF.

This NBITT assumption is compatible with relativistic quantum field the-
ory. In the Tomonaga-Schwinger[6, 7] formulation the evolving state is de-
fined on a forward moving space-like surface. Their work shows that this
surface can be defined in a continuum of ways without altering the predic-
tions of the theory, so that no Lorentz frame is singled out as preferred. On
the other hand, their formalism allows the quantum state to be defined by
the constant time surfaces in any one single Lorentz frame that one wishes to
choose, and shows that in this one frame the evolution, including all reduc-
tions associated with specific outcomes of measurements, proceeds forward
in time, with a well defined past that is not influenced either by later free
choices made by experimenters or by the outcomes of the later measurements.

This NBITI assumption is a small part of the larger locality condition in
question here, which is the demand that what an experimenter freely chooses
to do in one region has no effect in a second region that is spacelike separated
from the first.

These definitions allow the following theorem to be stated:

Theorem. Suppose a theory or model is compatible with the three premises:



1. Free Choices, which assert that the choice made in each region as to which
experiment will be performed in that region can be treated as a localized free
variable,

2. No Backward in Time Influence, which asserts that experimental out-
comes that have already occurred in an earlier region can be considered to
be fixed and settled independently of which experiment will be chosen and
performed later in a region spacelike separated from the first, and

3. For each of the alternative possible combinations of the free choices of
which measurements will be performed in a Hardy-type experiment the pre-
dictions of quantum theory will hold under the condition that that combina-
tion is chosen.

Then this theory or model violates the following Locality Condition:
The free choice made in one region as to which measurement will be per-
formed there has, within the theory, no influence in a second region that is
spacelike separated from the first.

2. Proof of the Theorem.

The theorem refers to the following Hardy-type [5] experimental set-up.

There are two experimental spacetime regions R and L, which are space-
like separated, with L lying earlier than R in LF. In region R there are two
alternative possible measurements, R1 and R2. In region L there are two
alternative possible measurements, L1 and L2. Each local experiment has
two alternative possible outcomes, labelled by + and — .

The detectors are assumed to be 100% efficient, so that if a measurement
is chosen in R then some outcome of that measurement, either 4+ or —, will
appear in R, and if a measurement is chosen in L then some outcome of that
measurement, either + or —, will appear in L.

The three assumptions are implemented by asserting that:

1. For each of the two choices L1 or L2 available to the experimenter in L, and
for each of the two alternative possible outcomes + or — of that experiment,
there are instances in which that experiment, L1 or L2, is performed, that



outcome, + or —, of that experiment appears, and an associated pair of
options R1 and R2 exists, and
2. In each such instance the predictions of quantum theory hold if R1 is
performed, and the predictions of quantum theory hold if R2 is performed.

These conditions can be formalized by defining an instance i to be a
triad {X;, W;(R1), W;(R2)}, where X; is a possible outcome of a possible
measurement in L, and W;(R1) is a possible world in which X; appears in
L and R1 is performed in R, and similarly for R2, and then specifying that
the predictions of quantum theory hold in W;(R1) and in W;(R2). This
structure just expresses in a compact notation the ideas that there is a free
choice and for each choice two possible outcomes in region L, and that for
any possible outcome in L there are two options, R1 and R2, available to the
experimenter in R, and that we are considering a theoretical structure that
allows one to say, for each of these two options in R, that if that option is
chosen then the corresponding predictions of quantum theory about outcomes
in R will hold. These assumptions are built into hidden-variable theories that
reproduce the predictions of quantum theory, but the local hidden-variable
theories have additional structure that is not entailed by the concept of an
instance, which is compatible both with normal quantum philosophy, and
with all the predictions of quantum theory.

The first two pertinent predictions of QT for this Hardy setup are these(*):

For every instance ¢ such that X; is a possible outcome of performing L1,

(2.1): If X; is — then outcome — appears in R in W;(R1).
(2.2): If X, is + then outcome — appears in R in W;(R2).
These two conditions immediately entail:

Property 1. In every instance 7 such that X, is a possible outcome of per-
forming L1:

Outcome — appears in R in W;(R1),

OR

Outcome — appears in R in W;(R2).



Proof of Property 1. For every instance is such that X; is an outcome of
performing L1, as specified in Property 1, either X; = — or X; = +. For
instances ¢ of the first kind prediction (2,1) ensures that the first alterna-
tive specified in Property 1 is satisfied. For instances ¢ of the second kind
prediction (2.2) ensures that the second alternative is satisfied. Q.E.D.

The second two pertinent predictions of QT for this Hardy setup are:

For every instance ¢ such that X; is a possible outcome of performing L2,

(2.3): If X, is — then outcome + appears in R in W;(R1).
There are instances ¢ such that X; is a possible outcome of performing
L2 and

(2.4): X; = — and the outcome + appears in R in W;(R2).
These two conditions immediately entail:

Property 2. There are instances ¢ such that X; is a possible outcome of
performing L2, and

Outcome + appears in R in W;(R1),

AND

Outcome + appears in R in W;(R2).

Proof of Property 2. Prediction (2.4) entails that there are instances i such
that the second of the two conditions demanded by Property 2 is satisfied.
Prediction (2.3) then ensures that for any of those instances i the first of the
two conditions demanded by Property 2 is also satisfied. Q.E.D.

Properties 1 and 2 are incompatible with the locality condition that the
choice between L1 and L2 has no influence in R. For under the condition
that L2 is performed there are instances ¢ that satisfy the condition on pos-
sible outcomes in region R that is specified in Property 2, whereas if L1 is
performed then the condition specified in Property 1 must hold. But these
two conditions on outcomes in R are converse conditions. This condition that



logically converse conditions on the outcomes in R hold according to whether
L1 or L2 is freely chosen in L is a sufficient condition for the existence within
the theory of an influence from L to R.

3. The Concept of Influence

There are perhaps many possible meanings of the concept of “influence”,
and hence it is important to be clear about the one being used here.

I am adhering here to what I believe to be the “orthodox quantum phi-
losophy.” What I mean by this is that one must make no assumption that is
mathematically or logically equivalent to the assumption that the outcome
of an unperformed local measurement operation exists, or to the assump-
tion that an essentially classical-type reality exists. It also means that our
physical theories are to be regarded as essentially rules that we use to make
predictions about our future experiences on the basis of the information that
we could get by performing possible measurements now. Thus the subject
matter of both theoretical physics and the present study is the logical and
mathematical structure of such theories, not speculations about some fun-
damentally unknowable ontological structure that lies behind the empirical
phenomena.

The purpose of a nonlocality theorem is to exhibit structural properties of
theories that reproduce the predictions of quantum theory and that conform
to certain other conditions about the structure of the theory. The first of
these other condition imposed here is the idea that choice of which of the two
local measurements will be performed is to be treated as a free variable. 1
assume, in accordance with orthodox thinking, that in the actual world only
one choice is made in each region on any actual occasion. Hence we must
go to the realm of theoretically possible worlds even to formulated the idea
of nondependence on free choice that we are trying to impose. Of course,
theoretical physics has traditionally been recognized as dealing with a whole
class of theoretically possible worlds, not merely with the one unique physical
world that we actually inhabit.

The essential ingredient of any proof of the nonlocality property (i.e., the
faster-than-light-influence or faster-than-light transfer of information prop-
erty) is the tandem or simultaneous use of both of the two free variables:



one can always accommodate the predictions of quantum theory by allowing
faster-than-light influences in just one direction. What cannot be done is to
demand, in addition to the no backward-in-time-influence assumption, that
for both of the two later possible experiments, at most one of which can ac-
tually be performed, the predictions of quantum theory hold. One can never
empirically demonstrate the failure of this theoretical assumption because
one could always assert that the predictions fail in the experiment that was
not performed. Thus the theorem does not assert that nature herself must in-
volve faster-than-light action. It says rather that any theoretical conception
of nature that reproduces the predictions of quantum theory, and the no-
bachward-in-time-influence condition, cannot be required to reproduce the
predictions of quantum theory in both of the theoretically possible experi-
ments between which the later experimenter is supposedly free to choose,
without contradictory conditions holding in the later region under the two
alternative possible condition between which the experimenter in the earlier
spacelike separated earlier region is free to choose.

I have defined the arising of contradictory conditions in the later region
under the two alternative choices made in the earlier region to be a sufficient
condition for the existence of an influence in the later region of the choice
made in the earlier region.

The conclusion obtained here about faster-than-light influences parallels
Bohr’s reply to the paper of Einstein, Podolsky, and Rosen[8]. The assump-
tion of those authors was that there was no faster-than-light influence of any
kind. Bohr’s response[9] was a partial denial of that assumption: he granted
that there was no faster-than light “mechanical disturbance” , but noted that
“there is an influence on the very conditions that define the possible types of
predictions regarding the future behavior of the system.” A “mechanical dis-
turbance” would be one capable of transmitting a signal, whereas the others
pertain to “predictions”, and hence to the theoretical structure, which from
Bohr’s point of view, was primarily a tool for making predictions. Bohr’s
recognition of the existence of faster-than-light influences of this latter kind
was, like the one deduced here, made completely within the framework of the
Copenhagen interpretation of quantum theory. In the argument presented



here the condition that is influenced from afar is of the kind considered by
Einstein, Podolsky, and Rosen: it involves two alternative possible future situ-
ations, whereas “mechanical disturbances” involve only actually performable
sequences of experiments.

4. Conclusions

All the assumptions of this nonlocality theorem are compatible with or-
thodox quantum philosophy, and the conclusion is compatible with relativis-
tic quantum field theory. The theorem therefore covers orthodox quantum
theory as a special case. No logical contradiction occurs: the only conflict is
with certain ideas carried over from classical relativity theory.

The locality condition whose violation is demonstrated here is similar to
the one occurring in Bell’s theorems in that: (1), the dependence in question
is on an experimenter’s free choice of which measurement to perform in a
certain region, and (2), the property that depends on this free choice depends
jointly on both of the alternative possibilities between which the experimenter
in the other region is free to choose. The present approach constructs the
structure needed for the proof, namely the notion of instances, directly from
the assumptions of Free Choice and No Backward in Time Influence, and
then carries through the proof, without generating any contradiction with
quantum theory, or using any combination of properties that are logically
equivalent to Bell’s hidden-variable assumptions. By dispensing in this way
with the hidden-variable substructure the present theorem evades challenges
to Bell’s theorems of the kind that recently appeared in the Proceedings of
the National Academy of Science[10].



*INB: To obtain these four predictions from Hardy’s paper, one trans-
forms my notation into Hardy’s using

(L,R) — (1,2)

(1,2) — (U, D)

(+, =) — (0.1)

(+.—)r — (1,0)
and uses the three zero’s connecting my pairs of states (R1+, L1—), (L2—, R1—)
and (L14, R2+) that arise from his Eqgs. (13.a,b, ¢) to obtain my (2.1),(2.2),

and (2.3), respectively, and uses his (13.d), which says that my matrix ele-
ment (L2—, R2+) is positive, to obtain my (2.4).]
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